Audition

Steven G. Zecker, Ph.D.
Unveiling the NIH Toolbox
Bethesda, MD
September 11, 2012

For more information, please visit www.nihtoolbox.org
Disclosure

I am an employee of Northwestern University in Evanston, Illinois with no outside activities or conflicts of interest to disclose.

Steven G. Zecker

Roxelyn and Richard Pepper Department of Communication Sciences and Disorders
Audition Domain Team

Steven Zecker, PhD, Northwestern U, Team Leader

Sumit Dhar, PhD, Northwestern U

Judy Dubno, PhD, Medical U of SC

David Eddins, PhD, U Rochester; U South Florida

Robert Frisina, Jr., PhD, U Rochester; U South Florida

Nina Kraus, PhD, Northwestern U

Robert Margolis, PhD, U Minnesota

Craig Newman, PhD, Cleveland Clinic

David Victorson, PhD, Northwestern U

Margaret Wallhagen, PhD, APRN, UCSF School of Nursing

Catherine Warrier, PhD, Northwestern U

Joseph Walton, PhD, U Rochester; U South Florida

Richard H. Wilson, PhD, Dept. of Veterans Affairs, Mountain Home, TN; East Tenn St U

Howard J. Hoffman, MA, NIDCD NIH Representative

James W. Griffith, PhD, Northwestern U, Domain Manager
Why include Audition?

Important for Daily Living and Quality of Life

• Educational, vocational, social consequences
• Ability to communicate
• Adherence and health outcomes
• Impacts across the lifespan
Special challenges that we faced on the Audition Team

- Brevity of administration
- Low expense
- Administration by non-experts (i.e., non-audiologists)
- Ambient noise in test environment
- Measurement across a wide age range
Audition includes the ability to:

- *detect* sounds
- *recognize* and *discriminate* among sounds, *comprehend* the meaning of acoustic events
- *localize* sound sources
- *determine* the direction and presence of sound movement
Construct: Ability to perceive language under challenging listening conditions

Task: Identify a series of words presented to each ear (random order) with increasing noise in background (7 signal-to-babble ratios)

Stimuli: Monosyllabic, high-frequency words (e.g., gun, soap). Reduces memory demands. Multi-talker babble.

Language: Norms for ages 6+ in English and Spanish
• **Total trials:** varies with performance; generally 25-35 words per ear

• **Technical characteristics:** well established
 - High test-retest reliability
 - Good validity – correlates well with pure-tone thresholds and other criteria

• **Total time:** varies with performance; typically 6 minutes total to test both ears

• **Scoring:** Algorithm provides thresholds for each ear: 50% correct (dB/SN)
Supplemental Tests

Construct:
Pure-tone sensitivity: NIH Toolbox Hearing Threshold Test

Construct:
Self-assessment: NIH Toolbox Hearing Handicap Inventory

Recommended:
Middle-ear functioning: tympanometry
An important supplement to threshold test whenever possible
Construct: Sensitivity to pure tone frequencies across the audible spectrum

Task: Did you hear the tone? (presented via headphones)

Stimuli:

- .5k, 1k, 2k, 4k, 6k and 8kHz
- Both left and right ears tested separately
- Catch trials to ensure data integrity

Scoring: Pure tone average (PTA: 1, 2, 4 kHz) used, but any desired audiometric configuration can be analyzed (e.g., 4-freq PTA: .5, 1, 2, 4 kHz)
Hearing Handicap Inventory – Screening Versions

Construct: Self assessment of functional hearing for adults 18+. A slightly modified version is used for the elderly ages 65+

Task: Answer 10 questions using a 3-point scale

Stimuli: Yes (4); Sometimes (2); No (0)

“Does a hearing problem cause you to be embarrassed when you meet new people?”

Time needed: 2-3 minutes
For more information visit www.nihtoolbox.org

Supported by

This project is funded in whole or in part with Federal funds from the Blueprint for Neuroscience Research and the Office of Behavioral and Social Sciences Research, National Institutes of Health, under Contract No. HHS-N-260-2006-00007-C.